
GT.M
Release Notes
V7.1-000

FIS
Page 2, June 14, 2023 FIS

Contact Information

GT.M Group
Fidelity National Information Services, Inc.
347 Riverside Drive
Jacksonville, FL 13220
United States of America

GT.M Support for customers: gtmsupport@fisglobal.com
Automated attendant for 24 hour support: +1 (484) 302-3248
Switchboard: +1 (484) 302-3160

Legal Notice

Copyright ©2023 Fidelity National Information Services, Inc. and/or its subsidiaries. All Rights Reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts and no Back-Cover Texts.

GT.M™ is a trademark of Fidelity National Information Services, Inc. Other trademarks are the property of their
respective owners.

This document contains a description of GT.M and the operating instructions pertaining to the various functions
that comprise the system. This document does not contain any commitment of FIS. FIS believes the information in
this publication is accurate as of its publication date; such information is subject to change without notice. FIS is
not responsible for any errors or defects.

Revision History

Revision 1.1 14 June 2023 Changed GTM-
DE378224 to
GTM-DE376224

Revision 1.0 19 April 2023 V7.1-000

http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt

GT.M V7.1-000
FIS

June 14, 2023, Page iii

Table of Contents
V7.1-000 ... 1

Overview .. 1
Conventions ... 1
Platforms .. 3

Platform support lifecycle ... 5
Additional Installation Instructions .. 5

Recompile ... 6
Rebuild Shared Libraries or Images .. 6
Compiling the Reference Implementation Plugin .. 6
Re-evaluate TLS configuration options ... 7

Upgrading to V7.1-000 .. 7
Stage 1: Global Directory Upgrade ... 8
Stage 2: Database Files Upgrade .. 9
Stage 3: Replication Instance File Upgrade .. 13
Stage 4: Journal Files Upgrade ... 14
Stage 5: Trigger Definitions Upgrade ... 14

Managing M mode and UTF-8 mode .. 14
Setting the environment variable TERM ... 15
Installing Compression Libraries .. 16

Change History ... 17
V7.1-000 .. 17

Database ... 19
Language .. 21
System Administration .. 23
Other .. 25
Error and Other Messages ... 27

ARGTRUNC .. 27
DBUPGRDREQ .. 27
FALLINTOFLST ... 27
LINETOOLONG ... 27
ORLBKDBUPGRDREQ ... 28
REORGUPCNFLCT .. 28

This page is intentionally left blank.

GTM V7.1-000
Page iv, June 14, 2023 FIS

GT.M V7.1-000
FIS

June 14, 2023, Page 1

V7.1-000

Overview

V7.1-000 adds MUPIP UPGRADE and MUPIP REORG -UPGRADE to upgrade V6 format database files
in place to V7 format as well as various fixes. For more information, refer to the Upgrading to V7.1-000
and Change History sections.

Items marked with the symbol document new or different capabilities.

Please pay special attention to the items marked with the symbol. as those document items that have
a possible impact on existing code, practice or process. Please be sure to recompile all objects to ensure
all the updates are in place.

Note

While FIS keeps message IDs and mnemonics quite stable, messages texts change
more frequently as we strive to improve them, especially in response to user
feedback. Please ensure you review any automated scripting that parses GT.M
messages.

Conventions

This document uses the following conventions:

Flag/Qualifiers -

Program Names or Functions upper case. For example, MUPIP BACKUP

Examples lower case. For example:
mupip backup -database ACN,HIST /backup

Reference Number A reference number is used to track software
enhancements and support requests.
It is enclosed between parentheses ().

Platform Identifier Where an item affects only specific platforms, the
platforms are listed in square brackets, e.g., [AIX]

Note

The term UNIX refers to the general sense of all platforms on which GT.M uses a
POSIX API. As of this date, this includes: AIX and GNU/Linux x86_64.

The following table summarizes the new and revised replication terminology and qualifiers.

V7.1-000 Conventions

FIS
Page 2, June 14, 2023 FIS

Pre V5.5-000 terminology Pre V5.5-000
qualifier

Current terminology Current qualifiers

originating instance or primary
instance

-rootprimary originating instance or
originating primary instance.

Within the context of a
replication connection between
two instances, an originating
instance is referred to as
source instance or source side.
For example, in an B<-A->C
replication configuration, A is
the source instance for B and C.

-updok
(recommended)

-rootprimary (still
accepted)

replicating instance (or
secondary instance) and
propagating instance

N/A for replicating
instance or
secondary instance.

-propagateprimary
for propagating
instance

replicating instance.

Within the context of a
replication connection between
two instances, a replicating
instance that receives updates
from a source instance is
referred to as receiving instance
or receiver side. For example,
in an B<-A->C replication
configuration, both B and C can
be referred to as a receiving
instance.

-updnotok

N/A N/A supplementary instance.

For example, in an A->P->Q
replication configuration, P is
the supplementary instance.
Both A and P are originating
instances.

-updok

Effective V6.0-000, GT.M documentation adopted IEC standard Prefixes for binary multiples. This
document therefore uses prefixes Ki, Mi and Ti (e.g., 1MiB for 1,048,576 bytes). Over time, we'll update
all GT.M documentation to this standard.

 denotes a new feature that requires updating the manuals.

 denotes a new feature or an enhancement that may not be upward compatible and may affect an
existing application.

 denotes deprecated messages.

 denotes revised messages.

 denotes added messages.

http://physics.nist.gov/cuu/Units/binary.html

Platforms V7.1-000

GTM V7.1-000
FIS

June 14, 2023, Page 3

Platforms

Over time, computing platforms evolve. Vendors obsolete hardware architectures. New versions
of operating systems replace old ones. We at FIS continually evaluate platforms and versions of
platforms that should be Supported for GT.M. In the table below, we document not only the ones that
are currently Supported for this release, but also alert you to our future plans given the evolution of
computing platforms. If you are an FIS customer, and these plans would cause you hardship, please
contact your FIS account executive promptly to discuss your needs.

Each GT.M release is extensively tested by FIS on a set of specific versions of operating systems
on specific hardware architectures, we refer to the combination of operating system and hardware
architecture as a platform. We deem this set of specific versions: Supported. There may be other
versions of the same operating systems on which a GT.M release may not have been tested, but on
which the FIS GT.M Group knows of no reason why GT.M would not work. We deem this larger
set of versions: Supportable. There is an even larger set of platforms on which GT.M may well run
satisfactorily, but where the FIS GT.M team lacks the knowledge to determine whether GT.M is
Supportable and therefore deem them: Unsupported. Contact FIS GT.M Support with inquiries about
your preferred platform.

As of the publication date, FIS supports this release on the hardware and operating system versions
below. Contact FIS for a current list of Supported platforms. The reference implementation of the
encryption reference plugin has its own additional requirements.

Platform Supported
Versions

Notes

IBM Power Systems AIX 7.1 TL 5, 7.2
TL 5

Only 64-bit versions of AIX with POWER7 as the minimum
required CPU architecture level are Supported.

While GT.M supports both UTF-8 mode and M mode on
this platform, there are problems with the AIX ICU utilities
that prevent FIS from testing 4-byte UTF-8 characters as
comprehensively on this platform as we do on others.

Running GT.M on AIX 7.1 requires APAR IZ87564, a fix for the
POW() function, to be applied. To verify that this fix has been
installed, execute instfix -ik IZ87564.

Only the AIX jfs2 filesystem is Supported. Other filesystems,
such as jfs1 are Supportable, but not Supported. FIS strongly
recommends use of the jfs2 filesystem on AIX; use jfs1 only for
existing databases not yet migrated to a jfs2 filesystem.

x86_64 GNU/Linux Red Hat
Enterprise
Linux 7.9,
8.7; Ubuntu
18.04 LTS,
20.04 LTS,
and 22.04

To run 64-bit GT.M processes requires both a 64-bit kernel as
well as 64-bit hardware.

GT.M should also run on recent releases of other major Linux
distributions with a contemporary Linux kernel (2.6.32 or
later), glibc (version 2.12 or later) and ncurses (version 5.7 or
later).

V7.1-000 Platforms

FIS
Page 4, June 14, 2023 FIS

Platform Supported
Versions

Notes

LTS; Amazon
Linux 2

Due to build optimization and library incompatibilities, GT.M
versions older than V6.2-000 are incompatible with glibc
2.24 and up. This incompatibility has not been reported by
a customer, but was observed on internal test systems that
use the latest Linux software distributions from Fedora (26),
Debian (unstable), and Ubuntu (17.10). In internal testing,
processes either hung or encountered a segmentation violation
(SIG-11) during operation. Customers upgrading to Linux
distributions that utilize glibc 2.24+ must upgrade their GT.M
version at the same time as or before the OS upgrade.

GT.M requires a compatible version of the libtinfo library. On
Red Hat, the ncurses-libs and ncurses-compat-libs packages
contain the libtinfo library. On Debian/Ubuntu, libtinfo5 and
libncurses5 packages contain the libtinfo library. If any of
these packages is not already installed on your system, please
install using an appropriate package manager.

To support the optional WRITE /TLS fifth argument (the
ability to provide / override options in the tlsid section of the
encryption configuration file), the reference implementation of
the encryption plugin requires libconfig 1.4.x or later.

Only the ext4 and xfs filesystems are Supported.
Other filesystems are Supportable, but not Supported.
Furthermore, if you use the NODEFER_ALLOCATE
feature, FIS strongly recommends that you use xfs.
If you must use NODEFER_ALLOCATE with ext4,
you must ensure that your kernel includes commit
d2dc317d564a46dfc683978a2e5a4f91434e9711 (search for
d2dc317d564a46dfc683978a2e5a4f91434e9711 at https://
www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3).
The Red Hat Bugzilla identifier for the bug is 1213487. With
NODEFER_ALLOCATE, do not use any filesystem other than
ext4 and a kernel with the fix, or xfs.

Our testing has shown an interaction between glibc 2.36 and
all versions of GT.M on Linux/x86_64 systems without AVX2
support. This can cause segmentation violations (SIG-11) in
processes performing concurrent updates to the same database
block, which terminate the process, but do not damage the
database. The issue is due to the way glibc performs certain
memory operations when using SSE2 instructions. The glibc
behavior was subsequently modified to avoid this issue, and
the change was included in glibc 2.37, however, we have not
yet confirmed the change resolved issue. Linux/x86_64 systems
with support for AVX2 instructions are not vulnerable, as
glibc chooses its AVX2 implementation, when available, over
its SSE2 implementation, and the problematic behavior is

https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3
https://www.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.0.3

Additional Installation Instructions V7.1-000

GTM V7.1-000
FIS

June 14, 2023, Page 5

Platform Supported
Versions

Notes

specific to SSE2. Note, depending on how CPU virtualization is
configured, that virtual environments may not support AVX2
even if the underlying hardware does.

Ubuntu 21.10 and Red Hat Enterprise Linux 9 are Supportable.

Note

● To use TLSv1.3 with OpenSSL 1.1.1 and
up, you must recompile the reference
encryption plugins

● RHEL 8 includes compat-
openssl10.x86_64 for binaries compiled
against OpenSSL 1.0.2 on RHEL 7

Important

Effective V7.0-003, GT.M is no longer Supportable on the 32 bit x86 platform. Please
contact your FIS account manager if you need ongoing support for GT.M on this
platform.

Platform support lifecycle

FIS usually supports new operating system versions six months or so after stable releases are available
and we usually support each version for a two year window. GT.M releases are also normally supported
for two years after release. While FIS attempts to provide support for customers in good standing on
any GT.M release and operating system version, our ability to provide support diminishes after the two
year window.

GT.M cannot be patched, and bugs are only fixed in new releases of software.

Additional Installation Instructions

To install GT.M, see the "Installing GT.M" section in the GT.M Administration and Operations
Guide. For minimal down time, upgrade a current replicating instance and restart replication. Once
that replicating instance is current, switch it to become the originating instance. Upgrade the prior
originating instance to become a replicating instance, and perform a switchover when you want it to
resume an originating primary role.

V7.1-000 Additional Installation Instructions

FIS
Page 6, June 14, 2023 FIS

Caution

Never replace the binary image on disk of any executable file while it is in use by
an active process. It may lead to unpredictable results. Depending on the operating
system, these results include but are not limited to denial of service (that is, system
lockup) and damage to files that these processes have open (that is, database
structural damage).

● FIS strongly recommends installing each version of GT.M in a separate (new) directory, rather than
overwriting a previously installed version. If you have a legitimate need to overwrite an existing
GT.M installation with a new version, you must first shut down all processes using the old version.
FIS suggests installing GT.M V7.1-000 in a Filesystem Hierarchy Standard compliant location such
as /usr/lib/fis-gtm/V7.1-000_arch (for example, /usr/lib/fis-gtm/V7.1-000_x86_64 on Linux systems).
A location such as /opt/fis-gtm/V7.1-000_arch would also be appropriate.

● Use the appropriate MUPIP command (e.g. ROLLBACK, RECOVER, RUNDOWN) of the old GT.M
version to ensure all database files are cleanly closed.

● Make sure gtmsecshr is not running. If gtmsecshr is running, first stop all GT.M processes including
the DSE, LKE and MUPIP utilities and then perform a MUPIP STOP pid_of_gtmsecshr.

● Starting with V6.2-000, GT.M no longer supports the use of the deprecated $gtm_dbkeys and the
master key file it points to for database encryption. To convert master files to the libconfig format,

please click to download the CONVDBKEYS.m program and follow instructions in the comments
near the top of the program file. You can also download CONVDBKEYS.m from http://tinco.pair.com/
bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m. If you are using $gtm_dbkeys for
database encryption, please convert master key files to libconfig format immediately after upgrading
to V6.2-000 or later. Also, modify your environment scripts to include the use of gtmcrypt_config
environment variable.

Recompile

● Recompile all M and C source files.

Rebuild Shared Libraries or Images

● Rebuild all Shared Libraries after recompiling all M and C source files.

● If your application is not using object code shared using GT.M's auto-relink functionality, please
consider using it.

Compiling the Reference Implementation Plugin

If you plan to use the example / reference implementation plugin in support of database encryption,
TLS replication, or TLS sockets, you must compile the reference plugin in order to match the

http://tinco.pair.com/bhaskar/gtm/doc/articles/downloadables/CONVDBKEYS.m

Upgrading to V7.1-000 V7.1-000

GTM V7.1-000
FIS

June 14, 2023, Page 7

shared library dependencies specific to your platform. The instructions for compiling the Reference
Implementation plugin are as follows:

1. Install the development headers and libraries for libgcrypt, libgpgme, libconfig, and libssl. On
Linux, the package names of development libraries usually have a suffix such as -dev or -devel and
are available through the package manager. For example, on Ubuntu_x86_64 a command like the
following installs the required development libraries:

sudo apt-get install libgcrypt11-dev libgpgme11-dev libconfig-dev libssl-dev

Note that the package names may vary by distribution / version.

2. Unpack $gtm_dist/plugin/gtmcrypt/source.tar to a temporary directory.

mkdir /tmp/plugin-build
cd /tmp/plugin-build
cp $gtm_dist/plugin/gtmcrypt/source.tar .
tar -xvf source.tar

3. Follow the instructions in the README.

● Open Makefile with your editor; review and edit the common header (IFLAGS) and library paths
(LIBFLAGS) in the Makefile to reflect those on your system.

● Define the gtm_dist environment variable to point to the absolute path for the directory where
you have GT.M installed

● Copy and paste the commands from the README to compile and install the encryption plugin
with the permissions defined at install time

The encryption plugin currently uses functionality that is deprecated in OpenSSL 3.0.
This will be fixed in a future release.

Re-evaluate TLS configuration options

The GT.M TLS reference encryption plugin implements a subset of options as documented in the
OpenSSL 1.0.2 man page for SSL_set_options which modify the default behavior of OpenSSL. Future
versions of the plugin will enable new options as and when the OpenSSL library adds them. To
enable options not supported by the GT.M TLS reference plugin, it is possible to create an OpenSSL
configuration for GT.M processes. See the OpenSSL man page for "config".

Upgrading to V7.1-000

Before you begin

GT.M supports upgrade from V5*, V6.* and V7.* versions to V7.1-000.

V7.1-000 Upgrading to V7.1-000

FIS
Page 8, June 14, 2023 FIS

GT.M does not support upgrading from V4* versions. Please upgrade V4 databases
using instruction in the release notes of an appropriate GT.M V6.* version.

The GT.M database consists of four types of components- database files, journal files, global directories,
and replication instance files.

GT.M upgrade procedure for V7.1-000 consists of 5 stages:

● Stage 1: Global Directory Upgrade

● Stage 2: Database Files Upgrade

● Stage 3: Replication Instance File Upgrade

● Stage 4: Journal Files Upgrade

● Stage 5: Trigger Definitions Upgrade

Read the upgrade instructions of each stage carefully. Your upgrade procedure for GT.M V7.1-000
depends on your GT.M upgrade history and your current version.

Stage 1: Global Directory Upgrade

FIS strongly recommends you back up your Global Directory file before upgrading. There is no one-step
method for downgrading a Global Directory file to an older format.

To upgrade from any previous version of GT.M:

● Open your Global Directory with the GDE utility program of GT.M V7.1-000.

● Execute the EXIT command. This command automatically upgrades the Global Directory.

● If you inadvertently open a Global Directory of an old format with no intention of upgrading it,
execute the QUIT command rather than the EXIT command.

If you inadvertently upgrade a global directory, perform the following steps to downgrade to an old
GT.M release:

● Open the global directory with the GDE utility program of V7.1-000.

● Execute the SHOW -COMMAND -FILE=file-name command. This command stores the current
Global Directory settings in the file-name command file. If the old version is significantly out of date,
edit the command file to remove the commands that do not apply to the old format. Alternatively,
you can use the output from SHOW -ALL or SHOW -COMMAND as a guide to manually enter
equivalent GDE commands for the old version.

An analogous procedure applies in the reverse direction.

Upgrading to V7.1-000 V7.1-000

GTM V7.1-000
FIS

June 14, 2023, Page 9

Stage 2: Database Files Upgrade

Before starting the database file upgrade, use the prior GT.M version to perform an appropriate MUPIP
action (i.e. ROLLBACK, RECOVER, RUNDOWN) to removes abandoned GT.M database semaphores
and releases any IPC resources.

There are three upgrade paths available when you upgrade to V7.1-000.

V7 Upgrade Path 1: In-place Upgrade

To upgrade from GT.M V7*:

There is no explicit procedure to upgrade a V7 database file when upgrading to a newer V7 version.
After upgrading the Global Directory, opening a V7 database with a newer V7 GT.M process
automatically upgrades the fields in the database file header.

To upgrade from GT.M V6* (or V5*):

There are two phases to upgrade from V6 to V7:

● Phase 1: MUPIP UPGRADE phase

● Phase 2: MUPIP REORG -UPGRADE (GVT Index Block Upgrade)

Both phases operate once per region and require standalone access. Phase 1 is not restartable. Phase 2 is
restartable.

While these are the basic steps, customers must integrate them with appropriate operational practice
and risk mitigating procedures, such as comprehensive testing, backup, integrity checks, journal
and replication management, and so on based on their environments and risk tolerance. FIS strongly
recommends performing a MUPIP INTEG (-FAST), of the database and creating a backup prior to
upgrade. Customers must test these utilities against copies of their own production files, using their
planned procedures, before undertaking the conversion of current production files.

While FIS has done considerable testing of MUPIP UPGRADE and MUPIP REORG -UPGRADE, the
duration of that testing has not reached the level FIS typically performs for work of this complexity
and impact. While our goal is to allow MUPIP REORG -UPGRADE to run with concurrent activity, our
testing has not reached a level to allow it to run without standalone access. Using MUPIP UPGRADE
and MUPIP REORG -UPGRADE should be a significantly faster alternative to using MUPIP EXTRACT
and LOAD. FIS favors using a "rolling" upgrade using a replicated instance. Whatever the approach you
choose, FIS requests capturing all logs in case there are issues or questions leading to support requests.

Phase 1: Standalone MUPIP UPGRADE

MUPIP UPGRADE performs Phase 1 actions of upgrading a database to V7. The format of the
UPGRADE command is:

MUPIP UPGRADE {-FILE <file name>; | [-REGION] <region list>}

V7.1-000 Upgrading to V7.1-000

FIS
Page 10, June 14, 2023 FIS

As the GT.M version upgrade changes the journal format to support 64-bit block pointers, MUPIP
UPGRADE does not maintain journal files or replication; configured journaling and replication resumes
for activity after MUPIP UPGRADE.

UPGRADE:

● Requires standalone access

● Turns off journaling and replication for the duration of UPGRADE

● When encountering an error where the command specifies multiple regions, UPGRADE moves on
to the next region, while for a single file/region, it terminates; avoid any unnecessary <CTRL_C> or
MUPIP STOP (or kill) of an active MUPIP UPGRADE process, as such an action leaves the database
region effectively unusable

● Estimates and reports the space required for its work

- UPGRADE estimates are intended to be generous, and, particularly for small databases, they may
seem unnecessarily large

- If MUPIP is not authorized to perform a required file extension, that is, the extension amount is
defined as zero (0), it produces an error before it does anything that would damage the selected
database file

● Moves blocks from immediately after the existing master map to make room for a V7 master map

- Depending on the block size and the GT.M version with which it was created, the new starting
Virtual Block Number (VBN), the location of block zero for the database file, may exceed the
starting VBN for a database created with V7, which causes a minor waste of space

- UPGRADE relocates blocks in multiples of 512 to align blocks with their local bitmaps

● Eliminates any globals that previously existed, but have been KILL'd at the name level; these global
variable trees (GVTs) contain only a level one (1) root block and an empty data (level zero) block and
are "invisible" to the GT.M process run-time

● Stores the offset GT.M must apply to the original block pointers as a consequence of the relocation of
the starting VBN

● Upgrades the directory tree (DT) block pointers from 32- to 64-bits; this requires splitting any blocks
that do not have sufficient space to accommodate the larger block pointers

● Ensures that all is work is flushed to secondary storage

● Reports completion of its activity on a database file with a "MUPIP MASTERMAP UPGRADE
completed" message

At this point, after a successful MUPIP UPGRADE:

Upgrading to V7.1-000 V7.1-000

GTM V7.1-000
FIS

June 14, 2023, Page 11

● All DT blocks are in V7m format and all GVT index blocks remain in V6/V6p format

● Subsequent activity that updates index blocks for existing GVTs implicitly converts any V6 index
blocks to V6p format after applying the offset

● No process other than MUPIP REORG -UPGRADE converts GVT index blocks from V6p format to
V7m format; in other words, adding new nodes does not create GVT index blocks with V7 format
- adding new nodes splits existing index blocks and such block splits retain the pre-existing block
format

● Newly created GVTs, storing new global names, have V7m format

● Data blocks, at level zero (0), and local bit map blocks have the same format in V6 and V7, so, for
consistency, normal updates also give those blocks a V7m format designation

These database changes are physical rather than logical, and thus do not require replication beyond
noting the increase in transaction numbers.

Phase 2: MUPIP REORG -UPGRADE (GVT Index Block Upgrade)

MUPIP REORG -UPGRADE performs Phase 2 actions of upgrading a database to V7 format. The format
of MUPIP REORG -UPGRADE is:

MUPIP REORG -UPGRADE {-FILE <file_name> | [-REGION] <region_list>}

Before image journaling with MUPIP REORG upgrade provides maximum resiliency. MUPIP REORG -
UPGRADE reports it has completed its actions for a region with a MUPGRDSUCC message, at which
point all index blocks have V7m format with 64-bit block pointers. You can resume and complete a
MUPIP REORG -UPGRADE stopped with a MUPIP STOP (or <Ctrl-C>); avoid a kill -9, which carries a
high risk of database damage.

MUPIP REORG -UPGRADE:

● Requires standalone access

● Runs on an entire region; as a result, MUPIP REORG -UPGRADE prevents multiple concurrent
REORG -UPGRADE runs per region

● Stops execution when a concurrent Online ROLLBACK is detected because that operation changes
the block content of the database

● Can be subject to stopping and restarting at any point

● Processes the GVTs within a database file

- Splitting any index blocks that do not have sufficient space to accommodate the block pointer
upgrade from 32 to 64 bits

- Updating the block pointers from 32 to 64 bits, also changing the version of the block to V7m

V7.1-000 Upgrading to V7.1-000

FIS
Page 12, June 14, 2023 FIS

- Journaling its work as before images (if so configured) and INCTN records

Phase 3: Optional GVT Data and Local Bit Map Block Upgrade

While it makes no operational or processing difference, GT.M does not consider the database "fully
upgraded" until the block version format of all data blocks becomes V7m. Any of the following
operations upgrade some or all of the remaining data blocks:

● MUPIP REORG

Because this operation may not visit every block in the database it may fail to upgrade static/
unchanging blocks

● MUPIP REORG -ENCRYPT

● MUPIP INTEG -TN_RESET

This operation requires standalone access and resets the transaction number on all blocks in the
database.

Failure to perform Phase 3 has NO implications for V7.1-000 but might be an issue for any as-yet
unplanned further enhancement.

V7 Upgrade Path 2: EXTRACT and LOAD

Two commonly used mechanisms are as follows. We recommend you use replication to stage the
conversion and minimize down time.

● MUPIP EXTRACT -FREEZE followed by a MUPIP LOAD

Using MUPIP EXTRACT with -FREEZE ensures that the V6 database files are frozen at the point of
the extract, preventing updates without administrative action to unfreeze the database. MUPIP LOAD
the extracts into newly created V7 database files

Use this operation when there is insufficient space to make a database extract

● MERGE command with two global directories and Extended References

Using this approach to transfer data from a V6 database file to a V7 database, administrators must
take some action to prevent updates during the transfer

This operation consumes less disk space and disk I/O. As a result the operation is faster than an
EXTRACT and LOAD.

If you are using triggers, extract the triggers from the V6 database and load them in
the new V7 database.

V7 Upgrade Path 3: No change

Upgrading to V7.1-000 V7.1-000

GTM V7.1-000
FIS

June 14, 2023, Page 13

Continue using your V6 databases with GT.M V7.1-000. In case you do not wish to operate with files of
differing format, specify the -V6 qualifier when invoking MUPIP CREATE.

Choosing the right upgrade path

Choose V7 Upgrade Path 1 or 2 if you anticipate a database file to grow to over 994Mi blocks or require
trees of over 7 levels as V7.1-000 supports 16Gi blocks and 11 levels. Note that the maximum size of a
V7 database file having 8KiB block size is 114TiB (8KiB*16Gi).

Choose the V7 Upgrade Path 3 if you do not anticipate a database file to grow beyond the V6 database
limit of 994Mi blocks or a tree depth limit of 7 levels. Note that the maximum size of a V6 database file
having 8KiB block size is 7TiB (8KiB*992Mi).

Other than the new maximum database file size and greater tree depth that comes with V7 Upgrade
Path 1 and 2, there is no difference between V7 Upgrade Path 1 and 2 and V7 Upgrade Path 3. You can
choose V7 Upgrade Path 3 first and then later choose V7 Upgrade Path 1 or 2 if a need arises.

For additional details on differences in factors involved in the V6 to V7 upgrade refer to Appendix G in
the GT.M Administration and Operations Guide.

Database Compatibility Notes

● Changes to the database file header may occur in any release. GT.M automatically upgrades database
file headers as needed. Any changes to database file headers are upward and downward compatible
within a major database release number, that is, although processes from only one GT.M release can
access a database file at any given time, processes running different GT.M releases with the same
major release number can access a database file at different times.

● Databases created with V5.3-004 through V5.5-000 can grow to a maximum size of 224Mi
(234,881,024) blocks. This means, for example, that with an 8KiB block size, the maximum database
file size is 1,792GiB; this is effectively the size of a single global variable that has a region to itself
and does not itself span regions; a database consists of any number of global variables. A database
created with GT.M versions V5.0-000 through V5.3-003 can be upgraded with the V5 version of
MUPIP UPGRADE to increase the limit on database file size from 128Mi to 224Mi blocks.

● Databases created with V5.0-000 through V5.3-003 have a maximum size of 128Mi (134, 217,728)
blocks. GT.M versions V5.0-000 through V5.3-003 can access databases created with V5.3-004 and
later as long as they remain within a 128Mi block limit.

● Database created with V6.0-000 through V6.3-014 have a maximum size of 1,040,187,392 (992Mi)
blocks.

● Database created with V7.0-000 and up have a maximum size of 17,179,869,184 (16Gi) blocks.

Stage 3: Replication Instance File Upgrade

GT.M V7.1-000 does not require new replication instance files when upgrading from any version after
V6.0-000.

V7.1-000 Managing M mode and UTF-8 mode

FIS
Page 14, June 14, 2023 FIS

Stage 4: Journal Files Upgrade

On every GT.M upgrade:

● Create a fresh backup of your database

● Generate new journal files (without back-links)

Important

This is necessary because MUPIP JOURNAL cannot use journal files from a release
other than its own for e.g. RECOVER, ROLLBACK, or EXTRACT.

MUPIP UPGRADE temporarily disables journaling and replication settings for the
duration of its activity. Once complete, MUPIP UPGRADE restores prior settings.

Stage 5: Trigger Definitions Upgrade

GT.M V7.1-000 does not require trigger definition upgrade when upgrading GT.M from any version
after V6.3-000. If upgrading from a prior GT.M release, please see the instructions in the release notes
for V6.3-014.

Managing M mode and UTF-8 mode

With International Components for Unicode® (ICU) version 3.6 or later installed, GT.M's UTF-8 mode
provides support for Unicode® (ISO/IEC-10646) character strings. On a system that does not have ICU
3.6 or later installed, GT.M only supports M mode.

On a system that has ICU installed, GT.M optionally installs support for both M mode and UTF-8
mode, including a utf8 subdirectory of the directory where GT.M is installed. From the same source
file, depending upon the value of the environment variable gtm_chset, the GT.M compiler generates
an object file either for M mode or UTF-8 mode. GT.M generates a new object file when it finds both
a source and an object file, and the object predates the source file and was generated with the same
setting of $gtm_chset/$ZCHset. A GT.M process generates an error if it encounters an object file
generated with a different setting of $gtm_chset/$ZCHset than that processes' current value.

Always generate an M object module with a value of $gtm_chset/$ZCHset matching the value
processes executing that module will have. As the GT.M installation itself contains utility programs
written in M, their object files also conform to this rule. In order to use utility programs in both
M mode and UTF-8 mode, the GT.M installation ensures that both M and UTF-8 versions of object
modules exist, the latter in the utf8 subdirectory. This technique of segregating the object modules by
their compilation mode prevents both frequent recompiles and errors in installations where both modes
are in use. If your installation uses both modes, consider a similar pattern for structuring application
object code repositories.

GT.M is installed in a parent directory and a utf8 subdirectory as follows:

http://icu-project.org

Setting the environment variable TERM V7.1-000

GTM V7.1-000
FIS

June 14, 2023, Page 15

● Actual files for GT.M executable programs (mumps, mupip, dse, lke, and so on) are in the parent
directory, that is, the location specified for installation.

● Object files for programs written in M (GDE, utilities) have two versions - one compiled with support
for UTF-8 mode in the utf8 subdirectory, and one compiled without support for UTF-8 mode in the
parent directory. Installing GT.M generates both versions of object files, as long as ICU 3.6 or greater
is installed and visible to GT.M when GT.M is installed, and you choose the option to install UTF-8
mode support. During installation, GT.M provides an option that allows placing the object code in
shared libraries in addition to individual files in the directory.

● The utf8 subdirectory has files called mumps, mupip, dse, lke, and so on, which are relative symbolic
links to the executables in the parent directory (for example, mumps is the symbolic link ../mumps).

● When a shell process sources the file gtmprofile, the behavior is as follows:

- If $gtm_chset is "m", "M" or undefined, there is no change from the previous GT.M versions to the
value of the environment variable $gtmroutines.

- If $gtm_chset is "UTF-8" (the check is case-insensitive),

- $gtm_dist is set to the utf8 subdirectory (that is, if GT.M is installed in /usr/lib/fis-gtm/
gtm_V7.1-000_i686, then gtmprofile sets $gtm_dist to /usr/lib/fis-gtm/gtm_V7.1-000_i686/utf8).

- On platforms where the object files have not been placed in a libgtmutil.so shared library,
the last element of $gtmroutines is $gtm_dist($gtm_dist/..) so that the source files in the
parent directory for utility programs are matched with object files in the utf8 subdirectory. On
platforms where the object files are in libgtmutil.so, that shared library is the one with the object
files compiled in the mode for the process.

For more information on gtmprofile, refer to the Basic Operations chapter of GT.M Administration and
Operations Guide.

Although GT.M uses ICU for UTF-8 operation, ICU is not FIS software and FIS does not support ICU.

Setting the environment variable TERM

The environment variable TERM must specify a terminfo entry that accurately matches the terminal
(or terminal emulator) settings. Refer to the terminfo man pages for more information on the terminal
settings of the platform where GT.M needs to run.

● Some terminfo entries may seem to work properly but fail to recognize function key sequences or
fail to position the cursor properly in response to escape sequences from GT.M. GT.M itself does
not have any knowledge of specific terminal control characteristics. Therefore, it is important to
specify the right terminfo entry to let GT.M communicate correctly with the terminal. You may need
to add new terminfo entries depending on your specific platform and implementation. The terminal
(emulator) vendor may also be able to help.

● GT.M uses the following terminfo capabilities. The full variable name is followed by the capname in
parenthesis:

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/ch03.html

V7.1-000 Installing Compression Libraries

FIS
Page 16, June 14, 2023 FIS

auto_right_margin(am), clr_eos(ed), clr_eol(el), columns(cols), cursor_address(cup),
 cursor_down(cud1), cursor_left(cub1), cursor_right(cuf1), cursor_up(cuu1),
 eat_newline_glitch(xenl), key_backspace(kbs), key_dc(kdch1),key_down(kcud1),
 key_left(kcub1), key_right(kcuf1), key_up(kcuu1), key_insert(kich1),
 keypad_local(rmkx),keypad_xmit(smkx), lines(lines).

GT.M sends keypad_xmit before terminal reads for direct mode and READs (other than READ *) if
EDITING is enabled. GT.M sends keypad_local after these terminal reads.

Installing Compression Libraries

If you plan to use the optional compression facility for replication, you must provide the compression
library. The GT.M interface for compression libraries accepts the zlib compression libraries without
any need for adaptation. These libraries are included in many UNIX distributions and are downloadable
from the zlib home page. If you prefer to use other compression libraries, you need to configure or
adapt them to provide the same API as that provided by zlib.

If a package for zlib is available with your operating system, FIS suggests that you use it rather than
building your own.

By default, GT.M searches for the libz.so shared library in the standard system library directories (for
example, /usr/lib, /usr/local/lib, /usr/local/lib64). If the shared library is installed in a non-standard
location, before starting replication, you must ensure that the environment variable LIBPATH (AIX)
or LD_LIBRARY_PATH (GNU/Linux) includes the directory containing the library. The Source and
Receiver Server link the shared library at runtime. If this fails for any reason (such as file not found,
or insufficient authorization), the replication logic logs a DLLNOOPEN error and continues with no
compression.

Although GT.M uses a library such as zlib for compression, such libraries are not FIS software and FIS
does not support any compression libraries.

http://www.zlib.net

GT.M V7.1-000
FIS

June 14, 2023, Page 17

Change History

V7.1-000

Fixes and enhancements specific to V7.1-000:

Id Prior Id Category Summary

GTM-DE325871 - Other Remove limit affecting sockets and improve error message
where it still exists for GT.CM

GTM-DE340906 - Language Attempting a LOCK with more identical arguments than
GT.M supports for the command generates an error

GTM-DE340950 - Language Exceeding the LOCK level limit for the same resource name
generates a LOCKINCR2HIGH error

GTM-DE376223 - Language $FNUMBER() handles fill requests up to close to the
maximum string length

GTM-DE376224 - Language Modulo of non-canonical number by a divisor greater than
999,999 returns a canonical result

GTM-DE376239 - Language When GT.M inserts an implicit QUIT to prevent a possible
error, it generates a FALLINTOFLST WARNING message

GTM-DE388565 - Language Avoid inappropriate NUMFLOW from a literal Boolean
argument with exponential (E) form

GTM-DE402020 - DB Prevent Block SIG-11 splits under rare concurrency
conditions involving empry string values

GTM-DE408789 - Admin MUPIP BACKUP -DATABASE uses faster copy
mechanism when available

GTM-DE411385 - Language Prevent rare terminations during compilation of certain
nested global variable references under FULL_BOOLEAN

GTM-DE411386 - Language Prevent hangs when compiling certain indirectly nested
Boolean expressions under FULL_BOOLEAN

GTM-DE421008 - Admin Triple MUPIP STOP within a minute similar, but slightly
better than kill -9

GTM-DE422089 - Other Improved detection and reporting of issues with utility
command length and parsing

GTM-DE422245 - Language GT.M correctly compiles certain indirectly nested Boolean
expressions and provides a new option to control Boolean
evaluation

Change History V7.1-000

FIS
Page 18, June 14, 2023 FIS

Id Prior Id Category Summary

GTM-DE493831 - Language Prevent rare deadlock while using JOB command

GTM-F135385 GTM-9380 Admin MUPIP RTCLDUMP reports the number of times a routine
has been replaced (rtnsupersede) in the autorelink cache

GTM-F135427 GTM-9450 Admin Support in-place conversion from V6 to V7 database
formats

GTM-F221672 - Admin Additional context in SHMHUGETLB syslog message

GT.M V7.1-000
FIS

June 14, 2023, Page 19

Database

● GT.M deals appropriately with a concurrency issue encountered when splitting a block, the record
triggering the split has a zero-length value, concurrent changes make the previous record appear
identical to the one triggering the split, and GT.M attempts to calculate a parent key to demarcate
the split. This apparently longstanding issue was detected by a customer using a stress test with
the default proactive block split setting. While more likely with proactive block splits, the issue is
difficult to reproduce without using carefully constructed update patterns. We have no indication
that it has ever been previously reported by a customer or detected in our testing. Previously, the
condition caused a process to fail with a segmentation violation (SIG-11) but did not result in any
database damage. (GTM-DE402020)

This page is intentionally left blank.

GTM V7.1-000
Page 20, June 14, 2023 FIS

GT.M V7.1-000
FIS

June 14, 2023, Page 21

Language

● GT.M appropriately handles a command with multiple (more than 255) LOCKs with the same name.
Previously, a GT.M command that created more than 255 LOCKs with the same name caused a
segmentation violation (SIG-11). (GTM-DE340906)

● An attempt by a process to incrementally LOCK the same resource name more than 511 times
produces a LOCKINCR2HIGH with accurate context. Previously LOCK processing did not
appropriately detect the limit or supply correct context. (GTM-DE340950)

● $FNUMBER() reserves appropriate memory to handle a third expr that approaches the maximum
string length (currently 1MiB). Note that this function and $JUSTIFY() reserve 65 bytes for their
actual formatting. Previously, a large specification for this amount could cause a segmentation
violation (SIG-11). (GTM-DE376223)

● Modulo of non-canonical number by a divisor greater than 999,999 returns a canonical result.
Previously, it might not. (GTM-DE376224)

● GT.M reports a FALLINTOFLST error after an argumentless DO embedded subroutine followed by a
label with a formallist when no QUIT terminates the code after the DO block, except when there are
no lines between the end of the embedded subroutine and the label with the formallist, in which case
GT.M infers a QUIT would be appropriate to separate them. When GT.M inserts an implicit QUIT, it
issues a FALLINOFLST warning unless compilation has a -NOWARNING qualifier. Previously, since
the FALLINTOFLST error was introduced in V6.0-002, GT.M inappropriately gave that error for cases
of that combination under circumstances where the QUIT was on the same line as the argumentless
DO rather than explicitly between the embedded subroutine and the label with the formallist. (GTM-
DE376239)

● GT.M handles string literal operands to a Boolean string relational operator where the literal
contains an exponential format appropriately. Previously such a combination inappropriately
produced a NUMOFLOW error if the numeric evaluation would have produced an error. (GTM-
DE388565)

● GT.M correctly processes Boolean expressions with side effects which occur as subscripts to
global variable references which are themselves subscripts of global variable references, when both
gtm_boolean>=1 and gtm_side_effects>=1. Previously, this circumstance could lead to process
termination due to a segmentation violation during compilation. Constructions known to produce
this error did so inconsistently and under rare compilation conditions. These cases were not reported
as appearing in customer code but rather identified using a "fuzzer." (GTM-DE411385)

● GT.M appropriately processes relational expressions which operate on a negated Boolean
expression, are operated on by another Boolean expression, contain at least one side effect, and are
compiled under FULL_BOOLEAN or FULL_BOOLWARN settings. Previously, GT.M hung during
compilation under these conditions. These cases were not reported as appearing in customer code but
rather identified using a "fuzzer." (GTM-DE411386)

Language

FIS
Page 22, June 14, 2023 FIS

● GT.M appropriately handles indirectly nested Boolean expressions where a parent Boolean
operates on a non-arithmetic, non-Boolean expression, that expression itself operates on at least one
Boolean, at least one sub-expression except for the first contains a side-effect, and gtm_boolean>=1.
Previously, this situation would result in out-of-order execution of certain operations and could
produce an incorrect truth value. This construction was discovered in "fuzzer" testing, and machine
code scans of several million lines of mumps source code did not reveal any instances of this issue
in application code. As part of these changes, GT.M provides the option of eliminating all Boolean
short-circuiting by setting 'extended Boolean' with the environment variable gtm_boolean=3. Under
this setting, GT.M evaluates all operations in a Boolean expression from left to right, even those
without visible side effects. The Boolean expression itself is evaluated only after all operands.
Enabling this setting comes with a serious performance cost. These changes also increase the
effectiveness of GT.M's Boolean literal optimizations under all settings. (GTM-DE422245)

● GT.M properly handles interrupts while jobbing off of a child process. Previously, in rare
circumstances and related to timing, an interrupt could result in a deadlock. This was only seen in
development and not reported by a customer. (GTM-DE493831)

GT.M V7.1-000
FIS

June 14, 2023, Page 23

System Administration

● MUPIP BACKUP -DATABASE attempts to use a faster copy mechanism depending on the support
by the kernel, and by source and destination filesystems. If the source and destination filesystems
are different or the faster copy mechanisms are not available in the kernel, MUPIP BACKUP
-DATABASE uses the default copy mechanism (/bin/cp). Previously, GT.M used faster copy
mechanisms only on Linux Kernel 5.3 or above, and changes due to backporting in Linux kernels
could cause MUPIP BACKUP to report an EXDEV error on filesystems where backups had earlier
been supported.

MUPIP BACKUP -ONLINE does not retry backup when it detects a concurrent rollback or on certain
errors during the copy phase of BACKUP. Previously, MUPIP BACKUP -ONLINE incorrectly retried
backup when it encountered a concurrent rollback or an error in the first backup attempt; the
workaround was to specify -RETRY=0. [Linux] (GTM-DE408789)

● MUPIP STOP three times within a minute logs the event to syslog and otherwise acts like a kill -9 by
stopping a process at points that may not be safe, except that it may produce a core file; previously
any three MUPIP STOPs over the life of a process acted like a kill -9 and produced no record of the
event. (GTM-DE421008)

● MUPIP RTCLDUMP reports the number of times a routine has been superseded (rtnsupersede) in the
autorelink cache. Previously, MUPIP RTCLDUMP did not record this value, and only recorded the
number of times a routine has been referenced. (GTM-F135385)

● GT.M V7.1-000 provides the capability to upgrade a V6 database to V7 in-place. There is no ability
to downgrade a V7 database to V6 in place. You can use MUPIP EXTRACT on V7 and MUPIP LOAD
on V6 as long as the data does not cause the V6 database file to exceed the V6 maximum limits or
revert to a prior version using a suitable combination of replicating instances. GT.M V7.1-000 blocks
all access to a V6 database marked as not fully upgraded from V4 format.

GT.M V7 databases differ from V6 in the following ways. Please refer to the Administration and
Operations Guide for more details about these differences.

- Starting Virtual Block Number (VBN) is 8193, or slightly more on upgraded files, in V7 vs. 513 in
V6

- Block "Pointers" are 64-bit in V7 rather than 32-bit in V6

A GT.M V7 instance can originate BC/SI replication stream to or replicate from a V6 BC/SI
replication stream as long as the V7 database remains within the maximum V6 limits.

The V6 to V7 database upgrade process is split into two phases intended to reduce the downtime
necessary for a database upgrade. This process is considerably faster and consumes less disk space
than a traditional extract, transfer and load cycle. Please refer to Upgrading to GT.M V7.1-000 for
more details. (GTM-F135427)

System Administration

FIS
Page 24, June 14, 2023 FIS

● The SHMHUGETLB syslog warning message provides information about the operation of the
calling process. Previously, SHMHUGETLB failure messages did not include operational information
necessary to understand the reasons for such failures. (GTM-F221672)

GT.M V7.1-000
FIS

June 14, 2023, Page 25

Other

● GT.M processes can use sockets created when over 1021 files, pipes, fifos, sockets, and/or regions
are already open. GT.M issues an FDSIZELMT error message when there are too many descriptors
needed by GT.CM servers. Previously, sockets created when there were too many open descriptors
caused an GTMASSERT2 error. (GTM-DE325871)

● GT.M command line parser correctly terminates input with a null byte. Previously, in rare cases, the
parser appended random characters for a PIPE device usage where a WRITE followed by the format
control character "!" did not precede WRITE /EOF. This was seen only in development/testing and
never reported by a user.

GT.M reports the LINETOOLONG error when input to a DSE, MUPIP, or LKE utility prompt exceeds
the allowed maximum of 33022 bytes. Additionally, GT.M reports the ARGTRUNC warning when a
shell argument of a GDE, MUPIP, or LKE utility executable exceeds the allowed maximum of 33022
bytes. Previously, GT.M silently truncated shell arguments that exceeded these limits and did not
produce an error when input to a utility prompt exceeded the allowed 33022 bytes. (GTM-DE422089)

This page is intentionally left blank.

GTM V7.1-000
Page 26, June 14, 2023 FIS

GT.M V7.1-000
FIS

June 14, 2023, Page 27

Error and Other Messages

ARGTRUNC

ARGTRUNC, UUUU argument number CCCC truncated. Keep the size of total command line within
NNNN bytes

DSE/LKE/MUPIP Warning: This warning appears when the GT.M parser truncates an argument of a
GT.M Utility (DSE, LKE, or MUPIP) executable exceeding the allowed maximum of NNNN bytes. CCCC
is the argument number with 1 being the first argument for the GT.M Utility executable.

Action: Reduce the size of the argument number CCCC.

DBUPGRDREQ

DBUPGRDREQ, Database file DDDD is not fully upgraded (format FFFF) and cannot be used by this
version of GT.M. Please upgrade the database.

MUPIP Error: The database file DDDD with block format FFFF has the fully upgraded flag set to FALSE
indicating that it holds a mix of block versions.

Action: While GT.M V6.* can use database files with formats V4/V5/V6 to V6, GT.M V7.* cannot handle
the V4 block format. Use GT.M V6.* to fully upgrade the database file to V6 format before using with
GT.M V7.*. Note that a partial MUPIP UPGRADE of a V6 database leaves database in an incomplete
state because MUPIP UPGRADE is not repeatable. Any attempt to access such a database results in this
error.

FALLINTOFLST

FALLINTOFLST, Fall-through to a label with formallist is not allowed

Run Time/Compile Time Error: This error indicates that M code reached a label with a formallist by
falling through from the previous label. When issued as a warning, it indicates the compiler determined
such an error could happen and may have inserted an implicit QUIT to prevent the run-time error

Action: Revisit your code to ensure that all invocations of labels with a formallist occur using a DO
command or extrinsic function ($$).

LINETOOLONG

LINETOOLONG, UUUU prompt input exceeds NNNN bytes

DSE/LKE/MUPIP Error: This error appears when the GT.M parser detects the input to a GT.M Utility
(DSE, LKE, or MUPIP) prompt exceeds the allowed maximum of NNNN bytes.

Error and Other Messages ORLBKDBUPGRDREQ

FIS
Page 28, June 14, 2023 FIS

Action: Reduce the size of input to the utility prompt. If input to the UUUU prompt is from a GT.M PIPE
device, set the RECORDSIZE deviceparameter to a value less than NNNN bytes.

ORLBKDBUPGRDREQ

ORLBKDBUPGRDREQ, Region RRR (DDDD) is not fully upgraded. ONLINE ROLLBACK cannot
continue

MUPIP Error: Region RRR pointing to database file DDDD has the fully upgraded flag set to FALSE and
the database format is not V7 indicating that there are V4 blocks in the database. ONLINE ROLLBACK
in GT.M V7.* cannot process these database files.

Action: Because an ONLINE ROLLBACK is not possible for this database, stop all access to the database
files and perform a ROLLBACK with standalone access.

REORGUPCNFLCT

REORGUPCNFLCT, MUPIP AAAA encountered a conflict due to OOOO (PID:PPPP)

MUPIP Error: MUPIP action AAAA encountered a conflict due to a concurrent operation OOOO run as
process ID PPPP.

Action: MUPIP operations REORG UPGRADE and ONLINE ROLLBACK cannot run concurrently due
to conflicting database changes. REORG UPGRADE exits if an ONLINE ROLLBACK is in progress or if
it detects that an ONLINE ROLLBACK has started. ONLINE ROLLBACK pauses while waiting for the
REORG UPGRADE to exit. ONLINE ROLLBACK has priority over REORG UPGRADE.

	
	Table of Contents
	V7.1-000
	Overview
	Conventions
	Platforms
	Platform support lifecycle

	Additional Installation Instructions
	Recompile
	Rebuild Shared Libraries or Images
	Compiling the Reference Implementation Plugin
	Re-evaluate TLS configuration options

	Upgrading to V7.1-000
	Stage 1: Global Directory Upgrade
	Stage 2: Database Files Upgrade
	Database Compatibility Notes

	Stage 3: Replication Instance File Upgrade
	Stage 4: Journal Files Upgrade
	Stage 5: Trigger Definitions Upgrade

	Managing M mode and UTF-8 mode
	Setting the environment variable TERM
	Installing Compression Libraries

	Change History
	V7.1-000

	Database
	Language
	System Administration
	Other
	Error and Other Messages
	ARGTRUNC
	DBUPGRDREQ
	FALLINTOFLST
	LINETOOLONG
	ORLBKDBUPGRDREQ
	REORGUPCNFLCT

